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P L A N E  A N A L O G  O F  S P O N T A N E O U S  S W I R L I N G  

B. A. Lugov t sov  UDC 532.516 

A plane analog of the problem of spontaneous swirlin 9 - -  the occurrence of a free transverse flow 
due to disturbance of  the initial plane-parallel flow ~ is considered. It is shown that in flows 
with circular streamlines between coaxial cylinders, loss of stability can result in the occurrence 
of axial flow that is azisymmetrie on the average (averaging over the axial coordinate and the 
azimuthal angle) because of the countergradient transfer of the axial momentum component by 
Reynolds stresses. 

The problem of spontaneous swirling was considered in [1-3], and it is formulated as follows: can 
rotational symmetr ic  flow arise in the absence of obvious external sources of rotation, i.e., under conditions 
in which axisymmetric  flow without  rotation is a priori possible? The  occurrence of free cross flow due to 
disturbance of the initial plane-parallel flow can be considered a plane analog of this phenomenon.  A more 
exact formulation of this problem is given in [2, 3]. The  formulation proposed there ensures strict control of 
the kinematic flow of the axial m o m e n t u m  component,  which eliminates inflow of swirling liquid in the region 
considered. In the case of a plane analog, this formulation ensures strict control of the kinematic flow of the 
transverse m o m e n t u m  component  and eliminates liquid inflow with transverse m o m e n t u m  through the lateral 
surface. The  occurrence of transverse flow is considered as bifurcation of the initial plane-parallel flow as a 
result of loss of stability [1]. 

In [2, 3], it is shown tha t  the bifurcation "axisymmetric flow-rotational symmetr ic  flow" (and the 
corresponding plane analog of such transition [3]) for disturbances of the same symmetry  as the initial flow 
does not take place for an arbitrary compressible liquid with varying viscosity. 

In the present paper,  we give an example of occurrence of transverse (axial) flow with loss of stability 
of the initial plane-parallel  flow of an inviscid incompressible liquid with circular streamlines between two 
coaxial cylinders. 

In the generally accepted notation (liquid density p = 1), the equations for such flows in cylindrical 
coordinates r, ~, z have the  form 

Du - v2/r = - p , ,  Dv + uv /r  = - p ~ / r ;  (1) 

Dw = -p~,  ru~ + u + v~ + rw~ = 0, (2) 

where D = O/Ot + uO/Or + (v/r)O/O~o + wO/Oz; the subscripts indicate derivatives with respect to the 
corresponding variables; the velocity components v = (u, v, w). 

We consider the disturbance of the initial flow v0 = vo(r), u0 = 0, w0 = 0, p0 = po(r), and P0r = vo2/r, 
where vo(r) is an arbitrary function of rl  ~< r ~< r2 confined between circular concentric cylinders. Infinitesimal 
disturbances satisfy linearized equations (1) and (2): 

Dou - 2vov/r = -p~, Dov + f~u = -p~ / r ;  (3) 

Dow = -p~,  rut + u + v~ + rw~ = 0; (4) 

Lavrent 'ev Ins t i tu te  of Hydrodynamics,  Siberian Division, Russian Academy of Sciences, Novosibirsk 
630090. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 39, No. 6, pp. 33-36, November- 
December, 1998. Original article submit ted December 29, 1997. 

0021-8944/98/3906-0847 $2.0.00 Q 1999 Kluwer Academic/P!enum Publishers 847 



0 0 
Do = ~ + (v0/r) ~ ,  n = v0, + .0 /r .  (5) 

Solutions of system (3)-(5) must satisfy the boundary conditions u = 0 at r = rl  and r = r2. 
Many papers have been devoted to studying this problem, and the behavior of solutions with variation 

in the initial velocity field vo(r) has been studied in detail. After disturbances are found by solution of the 
formulated problem, it is possible to compute the Reynolds stresses z and cp averaged over a~,t = - ( v u )  and 
a, ,  = - ( w u )  and to determine secondary (of the second order of smallness) flow (u2) = u2(r, t), (v2) = v2(r, t), 
and (w2) = w2(r, t), averaged over the same variables. For these quantities from (1) and (2) in a second 
approximation we obtain 

,,2(r, t) = 0, ~2, = - ( r 2 ( ~ u ) ) t / r  s, ws, = - ( r ( w , , ) ) t / r .  (6) 

In studies of the stability of the flows considered, one usually calculates the value of (vu) because, 
with allowance for viscosity, it governs the torque. The value of (wu) appears to have never been calculated. 
This is due to the fact that  in corresponding experiments, the length of the cylinders is always limited, and 
the question of occurrence of flow that is axial and transverse to the initial flow does not arise under such 
conditions. However, if this axial flow (in an indefinitely long tube) is treated as an analog of spontaneous 
swirling, it makes sense to determine it. We note that the assumption that such flow can arise is put forward 
in [1]. 

To determine the quanti ty of interest, we use the well-known results of studies of the stability of the 
flow considered (see, for example, [4]). We seek a solution of system (3)-(5) in the form of normal modes 

(Ul, Vl, Wl, Pl) = Re(U, V, W, P) e i(kz+rn~-~at), 

where the functions U, V, W, and P depend only on r. To determine these quantities, from (3)-(5) we obtain 
the following system of ordinary differential equations: 

i,~U - 2voV/r = - P t ,  i~V  + flU = - i m P l y ;  (7) 

iAW = - i k P ,  rUt + U + i m V  + i k r W  = 0 (8) 

with the boundary conditions U(rl)  = U(rs) = 0. Here A = (mvo/r) - w. For given k and m, system (7) and 
(8) together with the boundary conditions defines the eigenfunctions U, V, W, and P and the eigenfrequencies 
w. If the frequency with Im to > 0 is present in the spectrum, the initial flow is unstable. 

Eliminating V, W, and P from (7) and (8), for U we obtain the equation 

U " + 2 - C t U ' - ( K +  a )  m B r ~ u + y u + x ~ u = 0 .  (9) 

Here a = (kSr 2 - m2)/(kSr  s + mS), A = 2kSmN/(kSr 2 + m 2) - mfl ' / r ,  B = 2kZflvo/r, and K = k s + m2/r  2. 
If U is found, V and W are given by equalities 

i (  k2r2 ,  ) 
v = ~ m(rU)' + - - T -  u ; (lo) 

ik l mf l  
W = -~-~((rU) - - - ~  U).  (11) 

To calculate Reynolds stresses, it is convenient to bring Eq. (9) to a form that does not contain the 
first derivative. We set 

Then, from (9) we obtain 

U = (K/r) I /2Y.  

( B) Y"+ g ( r ) -K+x+X~ Y=0, 

where g(r) = [(2 - 3o~)/2 + 2rn2k2r2/(m 2 + k2r2)2]/r 2. 

(12) 
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The Reynolds stresses are defined as 

a~or = -(vlul)  = -(1/2)  Re (VU*) exp (2qt), 

axr = -(WlUl) = - (1 /2)  Re (WU*) exp (2qt). 

Hence, taking into account (9)-(12), we obtain formulas that define these quantities (q = Imw): 

(r2a~")T = -2q exp(2qt)[ mIYI2(A/IAI2 + 2B Re A/IAI4)- k2 ~rrd (rf~lYi2/lAi2)]; (13) 

(ra.T)  = -~exp (2q t )  klYI2(AIIAI 2 + 2BReA/IAI 4) +km (nlYI21rlAl 2) �9 (14) 

Formula (13) is given in [4]. For the problem considered, the Reynolds stress defined by formula (14) 
is important, because it leads to the occurrence of axial flow in a second approximation according to Eqs. 
(6). We note that although axisymmetric disturbances are known to grow most rapidly, they do not generate 
stresses required for the occurrence of axial flow because for m = 0, we have A = 0 and q = 0, or Re A = 0. 
This follows from Eq. (12). If k = 0, axial flow also does not occur, and this agrees with [3]. To show the 
possibility of transverse flow occurring, it suffices to consider initial data that correspond to any growing 
mode with nonzero k and nonzero m. Then, w2 is determined by integrating the third equation of (6) with 
respect to time with the initial condition w2(O, r) = 0. From these equations it follows that there are no full 
expenditure and axial momentum components. A layered flow (at least, two layers) with opposite velocities 
increasing with time arises. 

Hence it follows that the given flow involves countergradient transfer of the axial momentum 
component, which is sometimes associated with the occurrence of "negative" viscosity. This implies the 
following: if one tries to represent Reynolds stress using the "turbulent" viscosity coefficient and the strain 
tensor of mean flow, then, in the given flow, at least in a neighborhood of the boundary between the layers, 
the "turbulent" viscosity coefficient turns out to be negative. Apparently, this description is not adequate. 
Nevertheless, this terminology is widely used. These phenomena are known to arise in flows of planetary scale 
and in some rather complex flows (for example, the Ranque effect - -  the separation of hot and cold flows in 
a rotating liquid). The occurrence of this phenomenon in a simple flow such as the one considered here seems 
surprising and deserves further investigation. For a comprehensive study of the secondary flow resulting from 
instability and the stability of this mode, it is necessary to take into account nonlinearity and viscosity. 
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